ar X iv : 0 90 8 . 30 41 v 1 [ gr - q c ] 2 1 A ug 2 00 9 1 de Sitter thermodynamics in the canonical ensemble

نویسنده

  • Hiromi Saida
چکیده

The existing thermodynamics of the cosmological horizon in de Sitter spacetime is established in the micro-canonical ensemble, while thermodynamics of black hole horizons are established in the canonical ensemble. Generally in the ordinary thermodynamics and statistical mechanics, both of the micro-canonical and canonical ensembles yield the same equation of state for any thermodynamic system. This implies the existence of a formulation of de Sitter thermodynamics based on the canonical ensemble. This paper reproduces the de Sitter thermodynamics in the canonical ensemble. The procedure is as follows: We put a spherical wall at the center of de Sitter spacetime, whose mass is negligible and perfectly reflects the Hawking radiation coming from the cosmological horizon. Then the region enclosed by the wall and horizon settles down to a thermal equilibrium state, for which the Euclidean action is evaluated and the partition function is obtained. The integration constant (subtraction term) of Euclidean action is determined to reproduce the equation of state (e.g. entropy-area law) verified already in the micro-canonical ensemble. Our de Sitter canonical ensemble is well-defined to preserve the “thermodynamic consistency”, which means that the state variables satisfy not only the four laws of thermodynamics but also the appropriate differential relations with thermodynamic functions; e.g. partial derivatives of the free energy give the entropy, pressure, and so on. The special role of cosmological constant in de Sitter thermodynamics is also revealed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 90 6 . 10 47 v 1 [ gr - q c ] 5 J un 2 00 9 de Sitter equilibrium as a fundamental framework for cosmology

Cosmology might turn out to be the study of fluctuations around a “de Sitter equilibrium” state. In this article I review the basic ideas and the attractive features of this framework, and respond to a number common questions raised about the de Sitter equilibrium picture. I show that this framework does not suffer from the “Boltzmann Brain” problem, and relate this cosmological picture to rece...

متن کامل

ar X iv : 0 90 4 . 45 54 v 1 [ gr - q c ] 2 9 A pr 2 00 9 Island Cosmology

If the observed dark energy is a cosmological constant, the canonical state of the universe is de Sitter spacetime. In such a spacetime, quantum fluctuations that violate the null energy condition will create islands of matter. If the fluctuation is sufficiently large, the island may resemble our observable universe. Phenomenological approaches to calculating density fluctuations yield a scale ...

متن کامل

ar X iv : 0 71 0 . 06 10 v 1 [ gr - q c ] 2 O ct 2 00 7 de Sitter Relativity and Quantum Physics

In the presence of a cosmological constant, interpreted as a purely geometric entity, absence of matter is represented by a de Sitter spacetime. As a consequence, ordinary Poincaré special relativity is no longer valid and must be replaced by a de Sitter special relativity. By considering the kinematics of a spinless particle in a de Sitter spacetime, we study the geodesics of this spacetime, t...

متن کامل

ar X iv : 0 90 4 . 12 63 v 1 [ gr - q c ] 8 A pr 2 00 9 Spinning particles in Schwarzschild - de Sitter space - time

After considering the reference case of the motion of spinning test bodies in the equatorial plane of the Schwarzschild space-time, we generalize the results to the case of the motion of a spinning particle in the equatorial plane of the Schwarzschild-de Sitter space-time. Specifically, we obtain the loci of turning points of the particle in this plane. We show that the cosmological constant af...

متن کامل

ar X iv : h ep - t h / 05 01 21 8 v 2 9 A ug 2 00 5 Radial evolution in anti - de Sitter spacetime

Properties of Green's functions may be derived in either first or second quantisation. We illustrate this with a factorisation property for propagators in arbitrary spacetimes, and apply it to scalar fields in AdS space. Consider D + 1 dimensional spacetime with metric gµν and let ∇ 2 be the Laplacian, ∇ 2 = − 1 √ g ∂a √ gg ab ∂ b. (1) Suppose we have a region V of spacetime bounded by a surfac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009